Impact des nanotechnologies sur l'agriculture et l'alimentation

Michel Monsigny

CBM-CNRS et Université d'Orléans Membre titulaire de l'Académie d'Orléans

Jeudi 6 décembre 2012

Richard Feynman (1918-1988) CalTech Pasadena 29-12-1959

There's plenty of room at the bottom

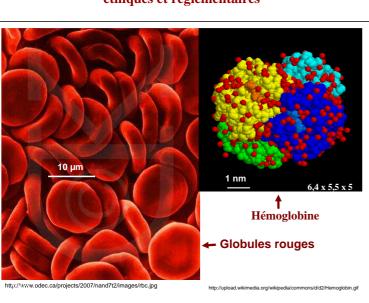
Il y a une place énorme à la base, c'est-à-dire

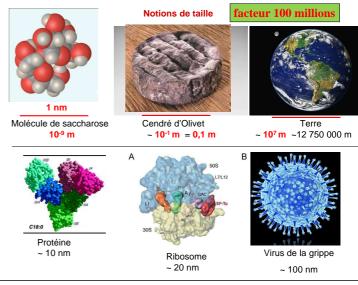
Alan Kay

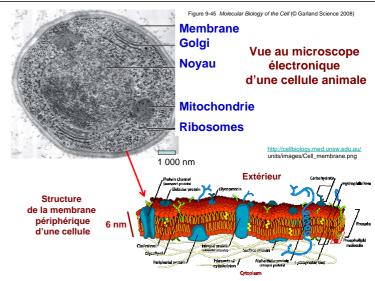
informaticien américain, (1940 - ...)

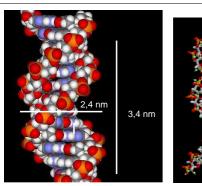
The best way to predict the future is to invent it

la meilleure façon de oir l'avenir est de l'inventer




Impact des nanotechnologies sur l'agriculture et l'alimentation

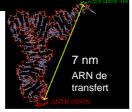

1 Données fondamentales


Taille nano Nano objets Conséquences

- 2 Impacts sur
- * Agriculture
- * Alimentaire
- 3 Aspects environnementaux, éthiques et règlementaires

Liaisons fortes

→ Intégrité
moléculaire


Liaisons faibles

→ interactions

A=T

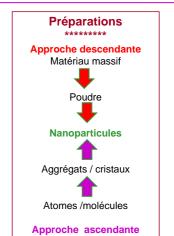
G=C

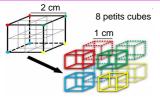
Double hélice d'ADN
→ Nanoparticules
Code-bar moléculaire

Nanoparticules

Nanoparticules de 1 à 100 nm

Sucre





NB: 1 nanoparticule de sucre de 100 nm de côté => 106 molécules de sucre 1 kg contient 1,75 10²⁴ (Yatto)

Nanoparticules : conséquences

accroissement considérable de la **surface accessible**

côté Surface

Surface totale (2 cm) \rightarrow 24 cm²

Surface totale (1 cm) → 48 cm²

1 m³ en cube de 1 m de côté ou en cubes de 1 nm de côté				
Cubes	Côté	Nombre	Volume unitaire	Surface des parois
Unités	m	N	m ³	m ²
A (m)	1	1	1	6
B (nm)	10-9	1027	10-27	6 109

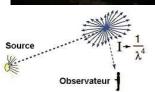
Le monde nanométrique corollaire

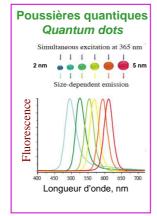
le très petit et le très grand vont de pair

Applications:

*catalyse chimique (fer, or, argent ...)

*vectorisation (pharmacologie)


*nutrition (dissolution, biodisponibilité ...)

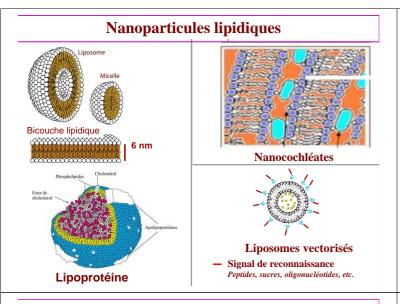

Nanoparticules : conséquences

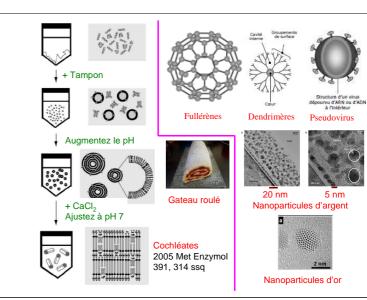
Diffusion de la lumière

Diffusion de Rayleigh : diamètre << 50 nm soit $<< 1/10 \lambda$

le bleu diffuse ~10 fois plus que le rouge

Nanoparticules : conséquences


Au-delà de la nature chimique Diverses influences


- Texture
- Durée de vie
- Suspension
- Solubilisation rapide
- Couleur : sels de fer
- Goût : cacao
- Protection:

vitamines, antioxydants, arômes ...

• Délivrance localisée :

salive, estomac, intestin grêle

Nano-objets: Caractérisation

ZétaSizer
Taille et charges superficielles

Résonance plasmonique de surface

Microscopie électronique

Microscope à force atomique

2º colloque Nanosciences et Mesures Paris 28 novembre 2012

Agriculture

Au niveau mondial : questions importantes au 21e siècle :

* augmentation de la population humaine

1960 3 milliards

2000 6,1 milliards

2012 7 milliards

2050 9 milliards

(+ en pays en voie de développement)

- * déclin de la disponibilité / personne
 - terres cultivables
 - ressources renouvelables en eau fraiche

Impact des nanotechnologies sur l'agriculture et l'alimentation

1 - Données fondamentales Taille nano Nano objets Conséquences

- 2 Impacts sur
- * Agriculture
- * Alimentaire
- 3 Aspects environnementaux, éthiques et règlementaires

Agriculture

Efficacité relative des produits utilisés

Entrants	Efficacité relative
N	20-50 %
azote	
Р	10-25 %
Phosphore	< 1% (sols calcaires)
K	~ 40 %
Potassium	
Pesticide	< 1 %
Eau	< 30 %
Eau	5-10 %
(terre aride / semi-aride)	

Agriculture: Impacts

Améliorations

** Rationalisation de la gestion des ressources agricoles

Fertilité des sols → Rendements

** Techniques de reproduction végétale

Régulateur de croissance végétale Protection antistress chaleur, sécheresse, maladie

**Techniques d'élevage

Santé du bétail

Agriculture: Applications

Nanoparticules

- ** engrais et des pesticides : épandage facilité efficacité accrue, dissolution plus efficace
- ** réduction des quantités de produits dans l'environnement.
- ** administration d'ADN pour les plantes (génie génétique)

Nanocapsules

** libération contrôlée : pesticides, herbicides, engrais, etc.

Exemple : pyréthrines naturelles

contre insectes ravageurs : coton, riz, arachides, soja.

* se brisent au contact des feuilles

libèrent agent actif dans tractus digestif alcalin de certains insectes.

** livraison d' hormones de croissance

de manière contrôlée

** administration de vaccins

Agriculture: Impacts

Diminutions

- ** Coûts de production
- ** Utilisation de pesticides
 - ** Utilisation d'engrais
 - ** Déchets
- ** Coûts de la main d'œuvre

Agriculture: Applications

Produits	Nano-objets	Applications	Développeur
Nanocides	Pesticides nanocapsules	Libération controllée	BASF
ivanocides	Pesticides nanoemulsions	Plus grande efficcacité	Syngenta
Engrais enveloppés	Ammoniac nanocapsules	Libération controllée	Kyoto Univ.
Antibactériens	nanoparticles et molécules d'adhésion spécifiques	Élimination Campylobacter jejuni / volailles	Clemson Univ.

Agriculture : Applications

Nanoparticules de fer

dégradation (oxydation) de contaminants organiques trichloroéthène, tétrachlorure de carbone, dioxines, PCB → composés carbonés simples beaucoup moins toxiques

Nettoyage sols contaminés et eaux souterraines

Nanoparticules de lanthane

absorption de phosphates dans étangs et piscines : =/= algues

Filtres à nanofibres d'oxyde d'aluminium : 2 nm diamètre

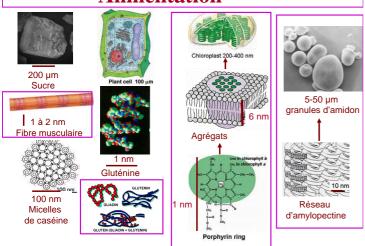
Purification de l'eau Nettoyage des eaux souterraines

Agriculture: Applications

- Nanopuces préservation de l'identité et suivi
- Nanodétecteurs à puce : dispositifs intelligents
 GPS → Culture de précision : prévention et alerte précoce
 → produits chimiques: apport contrôlé et de manière ciblée
- Biocapteurs
 - surveillance des sols
 - croissance des cultures
 - détection de pathogènes animaux ou végétaux
- Nanocapteurs
 - * contrôles : cultures, sols (éléments nutritifs...), santé des végétaux (viroses végétales), santé du bétail

AgricultureDomaines d'application

Domaines	Nano-objets	Applications	Développeur
Nano- détection	Nanodétecteurs	Aliments contaminés Pathogènes	Nestlé, Kraft Cornell Univ
Agriculture de précision	Nanodétecteurs reliés au GPS	Contrôles temps réel États du sol Croissance des récoltes	USDA
Élevage et pêche	Nanoparticles, fullérènes, dendrimères Nanocapsules Nanovaccins Nanopartic. de fer	Nutrition Médecine vétérinaire médicaments Surveillance des troupeaux Nettoyage des bassins d'élevage	Cornell Univ, Nanovic, Australie


Alimentation

Généralités

Plus de 300 nanoproduits alimentaires

Marché mondial		
	milliards \$	
2005 2010 2015	5 20 40	

Alimentation

Alimentation

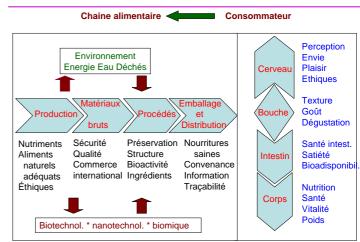


FIGURE 2-1 The two dimensions, or axes, of the food industry of the future

Alimentation

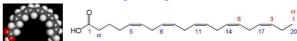
Préparation des aliments

Nanoparticules et poudres nanométriques, Nanoémulsions, micelles, nanogouttelettes

- → meilleure disponibilité et
- → meilleure dispersion des éléments nutritifs
- → augmentation de l'absorption des nutriments

Nanocapsules

- → amélioration biodisponibilité des nutraceutiques Nanocochléates (nanoparticules enroulées)
 - → livraison plus efficace de nutriments aux cellules
 - → préservation de la couleur ou du goût des aliments ions ferriques sur le riz


Aliments Exemples

Nanocapsules

Libération conditionnelle de nutriments.

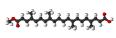
Exhausteurs de goût
Stéroïdes végétaux (phytostérols =/= cholestérol)
Huile de thon ...: acides gras ω 3 et ω 6

DHA: acide docosahéxaénoïque oméga-3: 22:6, Δ4,7,10,13,16,19

EPA: acide eicosapentaénoïque oméga-3: 20:5, Δ5,8,11,14,17

Aliments Exemples

Micelles 30 nm / Nanocochléates 50 nm


Libération conditionnelle des *nutriments* Allongement durée de vie des aliments Accroissement de la biodisponbilité

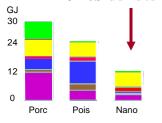
Nutraceutiques

Vitamines liposolubles Lycopène (tomate)

Phytostérols

CoQ10. Lutéine

Acides gras ω-3, ω-6 polyinsaturés DHA/EPA



Alimentation

Coût énergétique de la préparation d'un kg de protéines		
Origine	Gigajoules	
Porc	30	
Pois	24	
Pois nano	12	

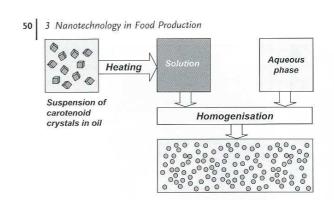
Aliments du futur

Transformation
Utilisateur process
Distribution
Élaboration
Ingrédients
(préparations)
Production

Alimentation Emballage

Barrières

- * mécaniques + autoréparation
- * Thermiques
- * Chimiques

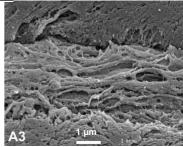

* Microbiologiques

Bactéries, levures, champignons,

Détection

- * pathogènes
- * durée de conservation
- * variations de température


Nanogouttelettes de caroténoïdes



Caséinate de Ca solidifé en présence de transglutaminase

Microscopie électronique Après 35 min à 50℃ sous cisaillement

Alimentation Emballage

Films protecteurs antimicrobiens et antifongiques

** Nanoparticules d'argent :

antiseptiques: antimicrobiens: cher

** Nanoparticules de MgO et ZnO: U. Leeds oxyde de magnésium et d'oxyde de zinc destruction efficace de micro-organismes:

bon marché

Alimentation Emballage

Films protecteurs antimicrobiens et antifongiques

- perte de dioxyde de carbone de la bière
 - pénétration d'oxygène dans la bouteille
 - → 6 mois sur l'étagère fraîcheur de la bière

Anti-desséchement

Anti- humidité et oxygène

économiques, légers, plus forts et plus résistants à la chaleur

Puces détectrices

Biopuces à ADN

Détection de * pathogènes

* bactéries nocives

Viande. Poisson. Champignons. Fruits. ...

Puces jetables enduite de produits chimiques

→ détecte la surface des bactéries

Nanobioluminescence (pulvérisateur)

protéine luminescente se lie à la surface des

microbes

Salmonella, E. coli. ...

émet une lumière visible

→ Boissons ou aliments contaminés

Impact des nanotechnologies sur l'agriculture et l'alimentation

1 - Données fondamentales

2 - Applications avérées et potentielles

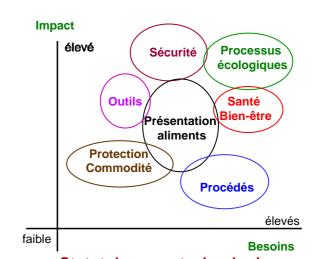
3 - Aspects environnementaux, réglementaires et éthiques

Risques Éthique Débats publics Grenelle 1 et 2

Alimentation Emballages intelligents

Films détecteurs

Nanoparticules fluorescentes (+ anticorps)


- → détection de produits chimiques
- → détection de pathogènes d'origine alimentaire

Nanocapteurs électrochimiques

→ détection de l'éthylène

Nanocapteurs biodégradables

→ surveillance température, humidité, vieillissement

Statut des nanotechnologies

« Toute substance est un poison : il n'y en a aucune qui n'en soit pas un. La dose appropriée différentie le poison du médicament. »

Paracelse 1493-1541

Risques liés aux nanoparticules

Cytotoxicité Génotoxicité

Nature chimique Agrégation / dissociation Dispersibilité Solubilité dans l'eau Biodégradabilité

Trachée
Bronches
Bronchiole
Alvéoles

sang rouge
"Inche en oxygène"
alvéole

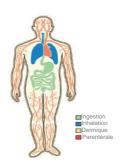
sang bleu "désaturé"
globule rouge
hémoglobine

http://www.alessandrocorid.ch/coursboel/Biologiehumainenfrimage/pournon_detail.jrg

Grenelle 1 Loi du 3 août 2009

http://www.iom

world.org/research/nanoparticle


→ Débat public utilisation des substances nanoparticulaires débat : fin 2009

→ Information du public et des consommateurs

→ Déclaration obligatoire : quantités et usages de nano-objets

Fort développement de l'utilisation conduisant

- → augmentation de l'exposition et
- → questionnement sur les risques pour la santé

INERIS

<u>Inhalation</u>: voie d'entrée privilégiée

Voie orale: via l'alimentation (10¹² NP/j), l'ingestion de particules inhalées...

<u>Voie cutanée</u> : via les produits cosmétiques...

Voie parentérale : Applications médicales

Éthique

CCNE*

Avis n°96 : Questions éthiques posées par les nanosciences, les nanotechnologies et la santé

Unesco / Comest**
Éthique et politique des nanotechnologies
2007, 30 pages
Éthique de la Nanotechnologie
2009, 6 pages

*Comité consultatif National d'Éthique

**Commission mondiale d'éthique des connaissances scientifiques et des technologies

CNDP 1

Débat public : Nanotechnologies

2009

Qu'attend-on de positif des nanotechnologies ?

Que craint-on de leur développement ?

Que leur reproche-t-on?

Que propose-t-on?

Grenelle 2

Loi n°2010-788 du 12 juillet 2010 - art. 188

Santé et environnement

* Prévention des risques

* Exposition aux substances nanoparticulaires. en l'état, en mélanges ou rejetées

Traçabilité et information du public

fabricants, importateurs et distributeurs

Déclaration périodique à l'autorité administrative

identité, quantités et usages des substances

Grenelle 2 suite

Loi n°2010-788 du 12 juillet 2010 - art. 188

Décret n°2012-232 du 17 février 2012 déclaration annuelle des substances à l'état nanoparticulaire

en vigueur au 1er janvier 2013

Décret n° 2012-233 du 17 février 2012 désignation des organismes destinataires des informations obtenues

par l' Anses : Afssaps ; INVS ; Inrs ; Inéris ...

Impact des nanotechnologies sur l'agriculture et l'alimentation

1 Données fondamentales

- 2 Applications avérées et potentielles
- 3 Aspects environnementaux, éthiques et réglementaires

Conclusions 1

Le vivant est constitué de nanoconstituants

Avancées

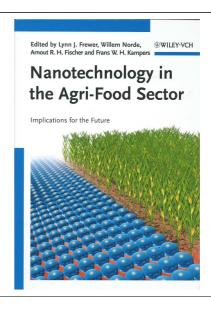
* Acquis scientifiques très importants

* Mise en évidence de propriétés spécifiques

* Potentiel considérable :

Agriculture, Alimentation,

Médecine, Industries informatiques, électroniques, NBIC Nanotechnologies, biotechnologies, informatique et sciences cognitives


Conclusions 2

Nécessité de développer

* la traçabilité, * les recherches toxicologiques, épidémiologiques ...

* la protection des travailleurs, de l'environnement ...

* des informations accessibles à tous

